Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Adicionar filtros








Intervalo de ano
1.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484773

RESUMO

Abstract Humankind has always been fascinated by venomous animals, as their toxic substances have transformed them into symbols of power and mystery. Over the centuries, researchers have been trying to understand animal venoms, unveiling intricate mixtures of molecules and their biological effects. Among venomous animals, Latrodectus Walckenaer, 1805 (widow spiders) have become feared in many cultures worldwide due to their extremely neurotoxic venom. The Latrodectus genus encompasses 32 species broadly spread around the globe, 14 of which occur in the Americas. Despite the high number of species found in the New World, the knowledge on these spiders is still scarce. This review covers the general knowledge on Latrodectus spp. from the Americas. We address widow spiders taxonomy; geographical distribution and epidemiology; symptoms and treatments of envenomation (latrodectism); venom collection, experimental studies, proteome and transcriptome; and biotechnological studies on these Latrodectus spp. Moreover, we discuss the main challenges and limitations faced by researchers when trying to comprehend this neglected group of medically important spiders. We expect this review to help overcome the lack of information regarding widow spiders in the New World.

2.
J. venom. anim. toxins incl. trop. dis ; 27: e20210011, 2021. tab, graf, mapas, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1346438

RESUMO

Humankind has always been fascinated by venomous animals, as their toxic substances have transformed them into symbols of power and mystery. Over the centuries, researchers have been trying to understand animal venoms, unveiling intricate mixtures of molecules and their biological effects. Among venomous animals, Latrodectus Walckenaer, 1805 (widow spiders) have become feared in many cultures worldwide due to their extremely neurotoxic venom. The Latrodectus genus encompasses 32 species broadly spread around the globe, 14 of which occur in the Americas. Despite the high number of species found in the New World, the knowledge on these spiders is still scarce. This review covers the general knowledge on Latrodectus spp. from the Americas. We address widow spiders' taxonomy; geographical distribution and epidemiology; symptoms and treatments of envenomation (latrodectism); venom collection, experimental studies, proteome and transcriptome; and biotechnological studies on these Latrodectus spp. Moreover, we discuss the main challenges and limitations faced by researchers when trying to comprehend this neglected group of medically important spiders. We expect this review to help overcome the lack of information regarding widow spiders in the New World.(AU)


Assuntos
Animais , Venenos de Aranha/toxicidade , Aranhas , Viúva Negra , Agentes Neurotóxicos
3.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484710

RESUMO

Abstract Background Snakes of the genus Bothrops, popularly known as pit vipers, are responsible for most cases of snakebite in Brazil. Within this genus, Bothrops jararacussu and B. jararaca deserve special attention due to the severity of their bites and for inhabiting densely populated areas. Regarding the treatment of snakebites by Bothrops jararacussu, questions have been raised about the effectiveness of the specific bothropic antivenom in neutralizing myotoxic effects; however, there are no accurate data for humans. Thus, the development of a differential diagnostic kit for this species would be of great interest because it provides, for healthcare professionals, a tool that would allow us to determine whether the accident was caused by B. jararacussu or other species of the genus. It would also make it possible to evaluate the specificity of the treatment and to provide data for epidemiological studies. Methods First, we produced a species-specific polyclonal antibody a potential biomarker of Bothrops jararacussu venom against bothropstoxin-I (BthTx-I), which is also found in smaller quantities in the venoms of B. jararaca from southern Brazil. Results Polyclonal antibodies against bothropstoxin-I could be separated into several species-specific immunoglobulins. Then, aiming to develop a system of safe and standardized immunoassay, we produced monoclonal antibodies. Seven hybridomas were obtained. Five of them were specific to the venom of B. jararacussu and two recognized the venom of B. jararaca from the southeastern population. The use of monoclonal antibodies also made it possible to differentiate B. jararacussu from B. jararaca venom obtained from the southern population. Analyzing the reactivity of monoclonal antibodies against other bothropic venoms, we found mAb Bt-3 to be more specific than others for B. jararacussu venom. Conclusions These results show the potential of BthTx-I for producing monoclonal antibodies that differentiate between B. jararacussu and other Bothrops species venoms.

4.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484733

RESUMO

Abstract Background Snakebite treatment requires administration of an appropriate antivenom that should contain antibodies capable of neutralizing the venom. To achieve this goal, antivenom production must start from a suitable immunization protocol and proper venom mixtures. In Brazil, antivenom against South American rattlesnake (Crotalus durissus terrificus) bites is produced by public institutions based on the guidelines defined by the regulatory agency of the Brazilian Ministry of Health, ANVISA. However, each institution uses its own mixture of rattlesnake venom antigens. Previous works have shown that crotamine, a toxin found in Crolatus durissus venom, shows marked individual and populational variation. In addition, serum produced from crotamine-negative venoms fails to recognize this molecule. Methods In this work, we used an antivenomics approach to assess the cross-reactivity of crotalic antivenom manufactured by IVB towards crotamine-negative venom and a mixture of crotamine-negative/crotamine-positive venoms. Results We show that the venom mixture containing 20% crotamine and 57% crotoxin produced a strong immunogenic response in horses. Antivenom raised against this venom mixture reacted with most venom components including crotamine and crotoxin, in contrast to the antivenom raised against crotamine-negative venom. Conclusions These results indicate that venomic databases and antivenomics analysis provide a useful approach for choosing the better venom mixture for antibody production and for the subsequent screening of antivenom cross-reactivity with relevant snake venom components.

5.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1040378

RESUMO

Background Snakebite treatment requires administration of an appropriate antivenom that should contain antibodies capable of neutralizing the venom. To achieve this goal, antivenom production must start from a suitable immunization protocol and proper venom mixtures. In Brazil, antivenom against South American rattlesnake (Crotalus durissus terrificus) bites is produced by public institutions based on the guidelines defined by the regulatory agency of the Brazilian Ministry of Health, ANVISA. However, each institution uses its own mixture of rattlesnake venom antigens. Previous works have shown that crotamine, a toxin found in Crolatus durissus venom, shows marked individual and populational variation. In addition, serum produced from crotamine-negative venoms fails to recognize this molecule. Methods In this work, we used an antivenomics approach to assess the cross-reactivity of crotalic antivenom manufactured by IVB towards crotamine-negative venom and a mixture of crotamine-negative/crotamine-positive venoms. Results We show that the venom mixture containing 20% crotamine and 57% crotoxin produced a strong immunogenic response in horses. Antivenom raised against this venom mixture reacted with most venom components including crotamine and crotoxin, in contrast to the antivenom raised against crotamine-negative venom. Conclusions These results indicate that venomic databases and antivenomics analysis provide a useful approach for choosing the better venom mixture for antibody production and for the subsequent screening of antivenom cross-reactivity with relevant snake venom components.(AU)


Assuntos
Mordeduras e Picadas , Antivenenos , Crotalus cascavella , Venenos de Crotalídeos , Formação de Anticorpos
6.
J. venom. anim. toxins incl. trop. dis ; 23: 12, 2017. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-954830

RESUMO

Background Snakes of the genus Bothrops, popularly known as pit vipers, are responsible for most cases of snakebite in Brazil. Within this genus, Bothrops jararacussu and B. jararaca deserve special attention due to the severity of their bites and for inhabiting densely populated areas. Regarding the treatment of snakebites by Bothrops jararacussu, questions have been raised about the effectiveness of the specific bothropic antivenom in neutralizing myotoxic effects; however, there are no accurate data for humans. Thus, the development of a differential diagnostic kit for this species would be of great interest because it provides, for healthcare professionals, a tool that would allow us to determine whether the accident was caused by B. jararacussu or other species of the genus. It would also make it possible to evaluate the specificity of the treatment and to provide data for epidemiological studies. Methods First, we produced a species-specific polyclonal antibody - a potential biomarker of Bothrops jararacussu venom - against bothropstoxin-I (BthTx-I), which is also found in smaller quantities in the venoms of B. jararaca from southern Brazil. Results Polyclonal antibodies against bothropstoxin-I could be separated into several species-specific immunoglobulins. Then, aiming to develop a system of safe and standardized immunoassay, we produced monoclonal antibodies. Seven hybridomas were obtained. Five of them were specific to the venom of B. jararacussu and two recognized the venom of B. jararaca from the southeastern population. The use of monoclonal antibodies also made it possible to differentiate B. jararacussu from B. jararaca venom obtained from the southern population. Analyzing the reactivity of monoclonal antibodies against other bothropic venoms, we found mAb Bt-3 to be more specific than others for B. jararacussu venom. Conclusions These results show the potential of BthTx-I for producing monoclonal antibodies that differentiate between B. jararacussu and other Bothrops species venoms.(AU)


Assuntos
Animais , Mordeduras de Serpentes , Serpentes , Antivenenos , Biomarcadores , Bothrops , Venenos de Crotalídeos , Anticorpos , Imunoensaio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA